СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ

Автор: Третий Рим


Средний

шагов 26

30 мин - 1 час


Комментарии:       Избранное: 0




Шаг 1

В состав системы питания входят элементы следующих подсистем:
– подачи топлива, включающей в себя топливный бак, электробензонасос с фильтром, регулятор давления топлива, трубопроводы и топливную рампу с форсунками;
– воздухоподачи, состоящей из воздухоподводящего рукава, воздушного фильтра, дроссельного узла, регулятора холостого хода;
– улавливания паров топлива, в которую входят адсорбер, клапан управления и соединительные трубопроводы.
Функциональное назначение подсистемы подачи – обеспечение подачи необходимого количества топлива в двигатель на всех рабочих режимах. Двигатели оборудованы электронной системой управления двигателем с распределенным впрыском топлива. В системе распределенного впрыска функции смесеобразования и дозирования подачи топливовоздушной смеси в цилиндры двигателя разделены: воздух подается подсистемой воздухоподачи, состоящей из дроссельного узла и регулятора холостого хода, а необходимое в каждый момент работы двигателя количество топлива впрыскивается форсунками во впускную трубу. Такой способ управления дает возможность обеспечивать оптимальный состав горючей смеси в каждый конкретный момент работы двигателя, что позволяет получить максимальную мощность при минимально возможном расходе топлива и низкой токсичности отработавших газов. Управляет системой впрыска топлива (а также системой зажигания) электронный блок (контроллер), непрерывно контролирующий с помощью соответствующих датчиков нагрузку двигателя, скорость движения автомобиля, тепловое состояние двигателя, оптимальность процесса сгорания в цилиндрах двигателя.
Система улавливания паров топлива предотвращает выход из системы питания в атмосферу паров топлива, неблагоприятно влияющих на экологию окружающей среды. Подробно эта система описана в отдельном подразделе (см. «Система улавливания паров топлива»).

Шаг 2

Датчик концентрации кислорода в отработавших газах (лямбда-зонд) является основным датчиком для обеспечения оптимального процесса сгорания. Он установлен на входе в нейтрализатор и совместно с электронным блоком и форсунками образует контур корректировки состава топливовоздушной смеси, подаваемой в двигатель (рис. 5.15). По сигналам датчика блок управления двигателем определяет количество несгоревшего кислорода в отработавших газах и соответственно оценивает оптимальность состава топливовоздушной смеси, поступающей в цилиндры двигателя в каждый момент времени. Зафиксировав отклонение состава от оптимального 1:14 (соответственно топливо и воздух), обеспечивающего наиболее эффективную работу каталитического нейтрализатора отработавших газов, блок управления с помощью форсунок изменяет состав смеси. В результате контур управления составом топливовоздушной смеси является замкнутым.
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 3

Шаг 3

Рис. 5.15. Схема контура управления составом топливовоздушной смеси: 1 – форсунка; 2 – выпускной коллектор; 3 – управляющий датчик концентрации кислорода в отработавших газах (лямбда-зонд); 4 – двигатель; 5 – электронный блок управления двигателем; 6 – каталитический нейтрализатор отработавших газов
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 4

Шаг 4

Топливный бак, формованный из бензостойкой пластмассы, установлен под полом кузова в его задней части и прикреплен двумя болтами и двумя гайками. Для того чтобы пары топлива не попадали в атмосферу, бак соединен трубопроводом с адсорбером. Во фланцевое отверстие в верхней части бака устанавливают электрический топливный насос. Из насоса топливо через регулятор давления подается в топливный фильтр, установленный на торце топливного бака, и оттуда поступает в топливную рампу двигателя, закрепленную на впускной трубе. Из топливной рампы топливо впрыскивается форсунками во впускную трубу.

Шаг 5

Топливопроводы системы питания представляют собой трубки, соединяющие между собой различные элементы системы.
Запрещается заменять стальные трубопроводы шлангами, медными или алюминиевыми трубками, так как только стальные трубопроводы удовлетворяют условиям работы при повышенном давлении и вибрации.
Шланги системы питания изготовлены по особой технологии из маслобензостойких материалов. Применение шлангов, отличающихся по конструкции от рекомендованных, может привести к отказу системы питания, а в некоторых случаях и к пожару.
В соединениях трубопроводов с элементами системы питания применяют круглые уплотнительные кольца. Использование уплотнений другой конструкции запрещено.
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 6

Шаг 6

Модуль топливного насоса включает в себя:
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 7

Шаг 7

...электрический насос...
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 8

Шаг 8

...регулятор давления топлива...
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 9

Шаг 9

...фильтр грубой очистки топлива...
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 10

Шаг 10

...и датчик указателя уровня топлива.

Шаг 11

Модуль топливного насоса обеспечивает подачу топлива и установлен в топливном баке, что снижает возможность образования паровых пробок, так как топливо подается под давлением, а не под действием разрежения.
Топливный насос погружного типа, с электроприводом, роторного типа. Насос неразборной конструкции ремонту не подлежит, при выходе из строя его надо заменить.

Шаг 12

Рампа 2 (рис. 5.16) форсунок представляет собой трубчатую пустотелую деталь с отверстиями для установки форсунок 3 и с подводящим штуцером 5 для присоединения топливопровода высокого давления. Форсунки уплотнены в гнездах резиновыми кольцами 4 и закреплены пружинными фиксаторами 1. Рампа с форсунками в сборе вставлена хвостовиками форсунок в отверстия впускной трубы и закреплена двумя болтами.

СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 13

Шаг 13

Рис. 5.16. Рампа форсунок: 1 – фиксатор форсунки; 2 – рампа; 3 – форсунка; 4 – уплотнительное кольцо форсунки; 5 – штуцер для присоединения топливопровода высокого давления
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 14

Шаг 14

Форсунки прикреплены к рампе, из которой к ним подается топливо, а своими распылителями входят в отверстия впускной трубы. В отверстиях рампы и впускной трубы форсунки уплотнены резиновыми уплотнительными кольцами А и Б. Форсунка предназначена для дозированного впрыска топлива в цилиндр двигателя и представляет собой высокоточный электромеханический клапан. Топливо под давлением поступает из рампы по каналам внутри корпуса форсунки к запорному клапану. Пружина поджимает иглу запорного клапана к конусному отверстию пластины распылителя, удерживая клапан в закрытом положении. Напряжение, подаваемое от блока управления двигателем через штекерные выводы В на обмотку электромагнита форсунки, создает в ней магнитное поле, втягивающее сердечник вместе с иглой запорного клапана внутрь электромагнита. Конусное кольцевое отверстие в пластине распылителя открывается, и топливо впрыскивается через диффузор корпуса распылителя во впускной канал головки блока цилиндров и далее в цилиндр двигателя. После прекращения поступления электрического импульса пружина возвращает сердечник и иглу запорного клапана в исходное состояние – клапан запирается. Количество топлива, впрыскиваемое форсункой, зависит от длительности электрического импульса.
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 15

Шаг 15

Регулятор давления топлива, установленный в топливном модуле, поддерживает постоянное давление топлива в системе питания двигателя на всех режимах работы двигателя. Подача электрического топливного насоса больше, чем это необходимо для обеспечения работоспособности системы. Поэтому при работе двигателя часть топлива благодаря регулятору давления постоянно сливается в топливный бак.
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 16

Шаг 16

Воздушный фильтр двигателя K7J установлен в центре моторного отсека.
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 17

Шаг 17

На автомобилях с двигателем К4J воздушный фильтр расположен около дроссельного узла.
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 18

Шаг 18

Фильтрующий элемент воздушного фильтра двигателя K7J бумажный, круглый...
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 19

Шаг 19

...а двигателя K4J прямоугольный.

Шаг 20

Оба элемента выполнены с большой площадью фильтрующей поверхности.

Шаг 21

Дроссельный узел представляет собой простейшее регулирующее устройство и служит для изменения количества основного воздуха, подаваемого во впускную систему двигателя. Он установлен на входном фланце впускной трубы. На входной патрубок дроссельного узла надет воздушный фильтр, соединения дроссельного узла с впускной трубой и воздушным фильтром уплотнены резиновыми прокладками.
В корпусе дроссельного узла выполнено отверстие для подвода дополнительного воздуха к регулятору холостого хода.
В корпусе 5 (рис. 5.17) установлена поворачивающаяся на оси заслонка 3. На одном конце оси установлен датчик 4 положения дроссельной заслонки системы управления двигателем, на другом – рычаг 2, к которому присоединена промежуточная тяга привода дроссельной заслонки. На корпусе 5 закреплен регулятор 1 холостого хода, дозирующий поток воздуха при закрытой дроссельной заслонке.
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 22

Шаг 22

Рис. 5.17. Дроссельный узел: 1 – регулятор холостого хода; 2 – рычаг привода дроссельной заслонки; 3 – дроссельная заслонка; 4 – датчик положения дроссельной заслонки; 5 – корпус дроссельного узла

Шаг 23

В процессе эксплуатации дроссельный узел не требует обслуживания и регулировки, следите лишь за состоянием резиновых уплотнений, чтобы избежать подсоса воздуха.
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 24

Шаг 24

Регулятор холостого хода поддерживает заданную частоту вращения холостого хода двигателя при полностью закрытой дроссельной заслонке во время его пуска, прогрева и при изменении нагрузки во время включения вспомогательного оборудования. Регулятор изменяет количество дополнительного воздуха, подаваемого во впускную систему помимо дроссельной заслонки, и представляет собой электромеханический клапан, прикрепленный двумя болтами к фланцу корпуса дроссельного узла. Выполненные во фланце дроссельного узла седло клапана регулятора и каналы образуют систему подачи воздуха, минуя дроссельную заслонку.
Блок управления двигателем, обработав сигналы от датчиков, определяет необходимость открытия клапана 1 (рис. 5.18) регулятора и передает импульсы на штекерный вывод 5 обмотки 3 статора регулятора. При каждом управляющем импульсе ротор 8 поворачивается на определенный угол, перемещая с помощью ходового винта 4 клапан 1 относительно седла. Во впускную трубу через каналы в дроссельном узле поступает дополнительный воздух. Определяя разрежение во впускной трубе двигателя, блок управления стремится поддерживать его на заданном уровне, периодически открывая и закрывая клапан регулятора холостого хода. Это дает возможность обеспечить подачу постоянного количества дополнительного воздуха для поддержания постоянной частоты вращения холостого хода. Изменяя величину открытия и закрытия клапана регулятора, блок управления компенсирует значительное увеличение или уменьшение количества подаваемого воздуха, вызванное его подсосом через негерметичную впускную систему или, напротив, засорением воздушного фильтра.
СИСТЕМА ПИТАНИЯ. ОСОБЕННОСТИ КОНСТРУКЦИИ, Шаг 25

Шаг 25

Рис. 5.18. Регулятор холостого хода: 1 – клапан; 2 – корпус регулятора; 3 – обмотка статора; 4 – ходовой винт; 5 – штекерный вывод обмотки статора; 6 – шариковый подшипник; 7 – корпус обмотки статора; 8 – ротор; 9 – пружина

Шаг 26

Включение дополнительных агрегатов вызывает увеличение нагрузки двигателя, сопровождающееся снижением частоты вращения холостого хода и изменением разрежения во впускной трубе, что также компенсируется блоком управления с помощью регулятора.

  • Комментарии
Загрузка комментариев...

Подписаться

Подписаться бесплатно.







Готово!